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Abstract— This paper describes a visual odometry algorithm in the inlier set. The inlier detection step (3) is the key
for estimating frame-to-frame camera motion from successive distinguishing feature of the algorithm. The feature mitgh
stereo image pairs. The algorithm differs from most visual = ga46 jnevitably produces some incorrect correspondences
odometry algorithms in two key respects: (1) it makes no prior hich. if left intact. will unf. blv bias the f toaim
assumptions about camera motion, and (2) it operates on dense w '(_: | e- intact, will uniavora y. 1as the ) rame-io ?
disparity images Computed by a Separate stereo a|gorithm. motion estimate. A common SOIUUOn to th|S problem IS to
This algorithm has been tested on many platforms, including use a robust estimator that can tolerate some number of false
wheeled and legged vehicles, and has proven to be fast, accuratematches (e.g., RANSAC [4]). In our algorithm, however,
and robust. For example, after 4000 frames and 400m of \ye 5dopt an approach described by Hirsitier et al. [7],
travel, position errors are typically less than 1m (0.25% of d loit st data at the inlier detecti t
distance traveled). Processing time is approximately 20ms on and exp O_' s_e_reo. range data a e,m ier detecuon stage.
a 512x384 image_ This paper includes a detailed description The core Intuition Is that the 3D |0catI0nS Of features must
of the algorithm and experimental evaluation on a variety of ~obey a rigidity constraint, and that this constraint can be
platforms and terrain types. used to identify sets of features that are mutually consiste
(i.e., a clique) prior to computing the frame-to-frame roati
estimate.

Localization is a key capability for autonomous ground This approach can be best describedirier detection
vehicles, and is typically performed using a combination father tharoutlier rejection, and offers a number of advan-
wheel odometry (from joint encoders) _and inertial sensmﬂages. First, it is extremely robust to false matches, which
(gyroscopes and accelerometers). This approach has tayes some of the requirements on the matching stage of
limitations, however: inertial sensors are prone to d”ftthe algorithm. As a consequence, we can simplify this stage
and wheel odometry is unreliable in rough terrain (wheelgny yrage accuracy for speed. Second, the algorithm is well-
tend to slip and sink). Visual odometry, which estimateg inned to handle dynamic scenes, since each independent
vehicle motion from a sequence of camera images, _Oﬁefﬁotion gives rise to a separate set of self-consistent fesitu
a natural complement to these sensors: it is insensitive {@hile we will not discuss dynamic scenes in this paper, it

soil mechanics, produces a full 6DOF motion estimate, ang,, |4 e noted that this algorithm is not confused when the
has Ipwer drift rates_ than all but_the most expensive IMUS, 10t is driving into its own shadow, a known problem for
This paper describes a real-time stereo visual odometmany algorithms.

algorithm that is particularly well-suited to ground vdhkic . )

applications. Our motive for adopting a stereo, rather than 1nere are other properties of the algorithm that should
monocular, approach derives from the observation that mafys® P€ noted. First, it does not require an initial motion
ground vehicles are already equipped with stereo camersimate, and, partly as a result, can handle very largeemag
for obstacle detection and terrain sensing, and that thecste ranslations. Second, the feature descriptor is not iamari
range data produced by these systems can be exploited girotation or scaling, so large motions around or along the
visual odometry. That is, the combination of stereo rangiant_'Ca,I axis will result in poor performance. This apparent
and stereo visual odometry is generally faster and mofinitation, however, is largely a design choice: for ground

reliable than stereo ranging followed by monocular visuaf€hicle applications, rotations around the optical axis ar
odometry. generally small (since this corresponds to vehicle rolhijlev

The basic algorithm is as follows: for a given pair ofscale changes only become significant at high-speeds and/or

frames, (1) detect features in each frame (corner detdgtiofP?W/ frame-rates. Furthermore, the non-invariant detector

(2) match features between frames (sum-of-absolute diffe'Sed In our algorithm are at least an order of magnitude

ences over local windows), (3) find the largest set of self@Ster than their invariant cousins.

consistent matches (inliers), and (4) find the frame-teaka  The visual odometry algorithm described in this paper

motion that minimizes the re-projection error for featurehias been employed in a number of programs, including
DARPA LAGR (Learning Applied to Ground Robotics)
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Program (MTP). sequences totaling over 24000 frames and 1700m of travel.

I. INTRODUCTION



Il. RELATED WORK pixel of interest. The disparity at each pixel is propor-

Contemporary approaches to visual odometry can be tional to the inverse range.
roughly categorized as being either monocular or steredne inputs available to the visual odometry algorithm, éher
and employing either feature tracking or feature matchinéﬁ:e’ are the raw, rectified, pre-filtered and disparity iemg
Nister [12], for example, describes a monocular approachh€ algorithm is as follows.
that emphasizes feature tracking over small image motiong, Inputs
and demonstrates the effectiveness of this algorithm fair re i ) o
time motion estimation on a variety of ground vehicles-&t Ja; Do denote the pre-filtered and disparity images for
Matthies [11] describes a stereo approach that also makiE@mea, acquired at some timg. Let J,, D, denote the pre-
use of feature tracking. This approach was later evolvefjtered and disparity images for frante acquired at some

into the visual odometry algorithms used on the JPL Mar&ter timet, > ..

Exploration Rovers [10], and on the soon-to-be-launched, Festure detection: (Jas Da; Jy, Dy) — (Fa; Fy)

Mars Science Lab [8]. The approach described in this pa- _ Qo “

per, however, does not derive from the Matthiess/MER/MSIPEIECt features in the pre-filtered image using a standard
lineage. Instead, it follows from the approach described bPTner detector (such as Harris [6] or FAST [13]) and com-
Hirschrrilller [7], which uses feature matching rather tharPUt€ the corresponding world coordinates from the disparit
tracking and employs stereo range data for inlier detectiofi"29€ D,. Discard features with unknown disparity. For
Our approach both generalizes and simplifies this earli&2CN feature, construct an x m — 1 descriptor from the

work, introducing a more complete inlier detection schemaurrounding pixels in/,. We use odd values for and omit
(based on the notion of cliques) and simplifying the pointIhe mlpldle pixel, such that th_e featur_e descriptor I_ength is
to-point inlier test to permit faster comparisons. a multiple of 8; e.g., a 7x7 window yields a descriptor of

Finally, we note that Agrawal [1] has recently described®N9th 48. Letf, = (j,w,s) denote a feature with image
an approach based on stereo feature-matching and use ogationy, world locationw and descriptos; let F, denote
the DARPA LAGR program. The results for this algorithmthe set of all SUCh features. !
are comparable with those reported here (see Section V). Repeat for mageglb and Db, to find the feature sefy.

In the taxonomy above, we explicitly exclude “batch” 'F‘ practlcef the flrst_detecnon step (on framp can be
techniques, such as structure-from-motion, bundi2mitted: we simply retain the feature géjfrom the previous

adjustment and visual SLAM. That is, our interest lies ir{rgme, ,SUCh .th.at 't_ can bepon‘iél for the curr.ent frame.
incremental, real-time, low-latency methods for estimgti With this optimization, the inputs to the algorithm become

camera motion. As an aside, however, we note there hH%e fgature sef lj] _’DF a from the previous frame and the
been some recent progress on sliding window techniques fgpw image pair(Jy, Ds).
stereo and visual odometry [14], and that these approachg&s Construct the score matrix: (F,, F,) — S

could be applied to the algorithm presented here. . L L
bp 9 P Compute the score matri for all pair-wise combinations of

1. ALGORITHM DESCRIPTION features inF, and F;, using the sum-of-absolute differences

) . (SAD) between the feature descriptors. Low values in the
For our stereo visual odometry algorithm, we assume thatoring matrix indicate that two features are very similar:

the robot is equipped with a stereo camera pair, and that ¢y, values indicate that they are very different. On maein
images have been processed using a dense stereo algorithiih vector instruction sets (such as Intel SSE2), the SAD
(such as [11], [5]). Real-time stereo algorithms typicallysperation can be performed on eight bytes simultaneously.
proceed through the following steps:
1) Rectification: warp the original left/right images such3- Match features: (Fy, Fy, 5) — M
that epipolar lines are aligned with the image rowsUsing the score matrixS, match featurest,, in frame a
These rectified images correspond to the images ométh featuresF; in frameb. This is equivalent to the linear
would obtain from a virtual pair of perfectly aligned assignment problem, which is typically solved using either
perspective cameras. the greedy algorithm (for sub-optimal solutions) or the Hun
2) Pre-filtering: smooth the rectified images with argarian method (for optimal solutions). However, since both
edge-preserving filter to remove high-frequency comef these algorithms are relatively expensi@4? logn) and
ponents. While this is ideally performed using aO(n?) in the number of features, respectively), we use a
Laplacian-of-Gaussian or a bilateral filter [15], afasterO(n?) assignment algorithm that selects co-occurring
difference-of-boxes filter is often preferred for the sakeminima in the score matrix. This algorithm can be stated as
of speed. follows: for each featuref, € F,, find the featuref;, with
3) Correlation: construct a disparity image by locatinghe minimum SAD score; for each featufg € F;, find the
matching pixels in the left/right pre-filtered images.feature f, with the minimum SAD score. Iff, = f, and
Typical scoring methods for the matching step includef, = f;, the featuresf, and f, are declared a match.
sum-of-absolute differences (SAD) and CENSUS [16], Let (f,, f») denote a match between features in frames
both of which consider a small window around theandb, and letM be the set of all matches.



Ad. Find the maximum inlier set: M — @

Compute a consistency matri¥’ for all pairwise combi-
nations of matches id/, using a simple rigidity constraint

on the world coordinates. A pair of matches is consistent if

the distance between two features in framémeasured in

world coordinates) is identical to the distance between the

corresponding features in franbe Any pair of matches for

which this is not the case must contain at least one incorrect
match, or must contain features from some independente

mover. At the simplest level, a pair of matchgs, f;) and
(f:, f}) are consistent iff they satisfy the inequality:

@)

wherew denotes the world coordinates of a feature &igla

|we — wh| — |wp —wp| < 8§

fixed threshold. The corresponding entry in the consisten

matrix W contains al if the constraint is satisfied, andl

AB. Validate the solution: (Q, ¢) — {pass/fail }

Validate the solution against three criteria:
o The number of points in the cliqu@. At a minimum,
we require three points to generate a unique motion
estimate. In practice, however, we typically demand at
least ten points to ensure that the clique captures the
camera egomotion (as opposed to some other motion in
the scene).
The co-linearity (or otherwise) of features in the image.
This is done be computing the eigenvalues of the feature
distribution and computing the maximal ratio; values
close to 1 indicate a good spread of features.
« The re-projection erroe, which must be below some
threshold (e.g., 0.3 pixels).

A7. Outputs: A, {passifail }

c
'F/he algorithm outputs the frame-to-frame motion estimate

otherwise. This test can also be generalized to better Bandhe» and a status flag indicating if the solution is valid. A
the quadratic range errors arising from stereo trianguiati covariance matrix is also computed, but not currently used.
(see [7], for example), but the analysis is beyond the SCORS ossion

of this paper.

Using the matrix W, find the largest set of mutually

imum clique on a graph with adjacency matbix. Since the

maximum clique problem is known to be NP-complete, we

use the following sub-optimal algorithm:

There are three features of this algorithm that should be
noted. First, the algorithm gains much of its speed by

)gxploiting stereo pre-processing (rectification, preefitig

and correlation). The computation time for visual odometry
is typically a small fraction of the time required for stereo
processing. Second, the algorithm us#ier detection rather

1) Initialize the clique to contain the match with thethan outlier rejection for selecting good feature matches.
largest number of consistent matches (i.e., choose tiie clique-based approach described in Step A4 can easily

node with the maximum degree).

cope with frames containing 90% outliers, which would

2) Find the set of matches compatible with all the matcheseverely tax RANSAC-style outlier-rejection schemesrdhi

already in the clique.

the algorithm includes strong validation checks to detect

3) Add the match with the largest number consistenégregious failures. For autonomous vehicle applications,

matches.

failure is generally acceptable if it is reported as such;

Steps 2 and 3 are repeated until the set of compatible matctgyeported failures, on the other hand, can very quickig lea

is empty.
Let @ denote the set of matchég,, f;) in the inlier set
discovered by this algorithm.

Ab. Estimate motion: Q — Agp, €

to catastrophic divergence of the integrated pose estimate
The key tuning parameters in this algorithm are the feature
descriptor size (A2), clique inlier threshold (A4), mimmu
number of features (A6) and re-projection error (A6). None
of these parameters shows a high degree of sensitivity,
however, and one can easily find a set of values that produces

Estimate frame-to-frame camera motion by minimizing th&oth a high frequency of correctly matched frames and a

image re-projection error for all matches in the cligueWe
seek the homogeneous transfofxy, that minimizes the re-
projection error:

Y (o —PAw)* + (s — PA  w,)*  (2)
(fa:fb)eQ

€ =

very low (or zero) frequency of unreported failures. It sldou

be noted that the same set of parameter values is used

for all of the experiments described in Sections IV and V.

Algorithm run-time is mainly driven by the feature descrito

size; experimentally, we have found a window size of 7 to

9 to be a good compromise between speed and reliability.
The algorithm also has some key limitations following di-

where j and w are the homogeneous image and worldectly from the design choices. First, the feature deteaar

coordinates, respectively, anél is the camera projection

descriptors are not scale invariant, such that large mstion

matrix. The solution is found using the standard Levenberglong the optical axis will produce relatively few matches.

Marquardt least-squares algorithm, with one small modificaVhile we could use a scale invariant feature detector such
tion: after finding the initial solutiom\,;, we discard any as SIFT [9] or SURF [2], these would significantly reduce

matches whose re-projection error exceeds a set thresholar real-time performance; the current corner detector can
and re-run the optimization. This second pass discards apyocess a 640x480 image in a few milliseconds, versus tens
outliers that survive the inlier detection step. or hundreds of milliseconds for scale invariant detectors.
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Fig. 1. Top-left: the JPL sandbox, with the BigDog camera medrdn a tripod (the tripod is hand-carried). Top-middle argtright: typical camera

views, showing sand, rocks and leaves. The bright squaregs@reflector used for ground-truth. Bottom: trajectsréstimated by visual odometry (three
runs). The first two runs start 0, 0) and take clockwise laps around the sandbox; the final ruelgastraight out and back (twice).

30Hz 15Hz
Run Size Dist.| Frames Time 2D RMS err. 3D RMS ert. Frames Time 2D RMS err. 3D RMS err.
1 160x120 156m 4815 14.3ms 0.422m (0.27%) 0.824m (0.53%) 2407 14.4ms 0.597m (0.39%) 0.669m (0.44%)
2 160x120 202m 5875 17.8ms 0.723m (0.36%) 0.934m (0.46%) 2937 17.6ms 0.178m (0.09%) 0.382m (0.19%)
3 160x120 89m 2843 19.7ms  0.435m (0.49%) 0.530m (0.60%) 1421 19.2ms 0.092m (0.11%) 0.095m (0.11%)
1 320x240 154m 4815 16.1ms  0.439m (0.28%) 0.554m (0.36%) 2407 16.1ms 0.196m (0.13%) 0.310m (0.20%)
2 320x240 201m 5875 19.3ms 0.200m (0.10%) 0.461m (0.23%) 2937 19.0ms 0.167m (0.08%) 0.436m (0.22%)
3 320x240 88m 2843 22.7ms 0.073m (0.08%) 0.175m (0.20%) 1421 24.1ms 0.029m (0.03%) 0.030m (0.03%)
1 640x480 154m 4815 22.0ms 0.196m (0.13%) 0.235m (0.15%) 2407 20.9ms 0.158m (0.10%) 0.208m (0.14%)
2 640x480 200m 5875 23.3ms 0.091m (0.05%) 0.362m (0.18%) 2937 23.2ms 0.106m (0.05%) 0.274m (0.14%)
3 640x480 88m 2843 27.9ms  0.055m (0.06%) 0.102m (0.12%) 1421 27.7ms 0.046m (0.05%) 0.047m (0.05%)

TABLE |
BIGDOG SANDBOX RESULTS(HAND-HELD CAMERA).

Second, the motion estimator only compares two frames, IV. APPLICATION1: BIGDOG

and the overall camera trajectory is computed via simple

integration of successivd’s. As we will show in Section BigDog is a four-legged, dynamically stabilized robot
IV, this can lead to a paradoxical decrease in accurageveloped by Boston Dynamics. It is a prototype ‘pack-
at high frame rates. The alternative is to employ bundlenule’ intended for use in rugged off-road terrain, and is
adjustment (BA) or simultaneous localization and mappingapable of walking, trotting, climbing slopes and stepping
(SLAM), but this is not without cost. Most of the relevantover obstacles. BigDog uses visual odometry for both pose
BA/SLAM techniques employ a sliding window of image estimation and terrain reconstruction. For pose estimatio
frames, such that pose estimates are only reported after #igual odometry can be combined with inertial data from the
frame has departed the sliding window (high latency), or arén-board IMU, and with kinematic pose estimates derived
continuously revised as new measurements arrive (Unusy@®m joint encoders in the legs (i.e., leg odometry). For
semantics). In contrast, the stereo visual odometry dlgari terrain reconstruction, stereo range data and visual ottgme
described here is a real-time, low-latency ‘black-box’ w80 pose estimates are fused directly to produce a high-résplut
output is directly analogous to wheel odometry or inertiagliding map of the terrain directly in front of and beneath
navigation systems. the robot. This allows the robot to plan foot placements



around obstacles with centimeter-level accuracy, evérodge timating and integrating sequential frame-to-frame mugio
obstacles are no longer visible in the camera. Therefore, at higher frame rates, we are also integrating mo
The primary vision sensor on BigDog is a downwardnoise. These results suggest that better accuracy may be
looking stereo camera pair from Point Grey Research (Bunobtained with multi-frame or sliding window estimatorsye.
blebee 640x480 monochrome with 40 degree horizontélundle adjustment, visual SLAM and related techniques,
field-of-view). To evaluate the performance of visual odemeas described in Section IIl). There is, of course, a lower
try, we collected data from an identical hand-held camera imound on the practical frame rate, since any visual odometry
the JPL sandbox (see Figure 1). The sandbox is a somewladgorithm must have significant image overlap in order to
simplified off-road environment, with sand, rocks and amatch features. In the case of BigDog, simple calculations
scattering of fallen leaves. The camera was hand-carriéhsed on the expected vehicle rotation rates put that lower
to simulate the motion of the BigDog vehicle, with twobound at around 10 to 15Hz.
human legs substituting for the four legs of BigDog (both Table | lists the processing time for the visual odometry
produce periodic vertical displacement, albeit at différe algorithm running on a single core of a 2.4GHz Core 2
frequencies). Three trials were conducted, as shown inr€iguDuo processor. These numbers do not include the stereo
1: runs 1 and 2 are clockwise loops around the sandbox (thrpeocessing time, which ranges from 6ms at 160x120 to 25ms
and four laps, respectively) and run 3 is straight out-asckb at 320x240 and 180ms at 640x480. The processing time for
(two laps). visual odometry ranges 14ms at the lowest resolution to 28ms
Obtaining ground-truth pose estimates for a hand-helat the highest, and does scale directly with image size. If
camera is somewhat challenging, and we have therefone consider the steps in the algorithm, we expect the feature
opted to ground-truth the reconstructed terrain rathen thaletection stage to scale with the number of image pixels, but
the camera trajectory. Using a TotalStation, we surveyddr all subsequent stages to scale with the number of feature
four key points in the sandbox (i.e., distinctive rocks),The preferred number of features is one of the parameters to
then manually identified these rocks in the recorded imagie algorithm, and is roughly constant across resolutions.
sequence. This process establishes pair-wise correspeesle At the desired BigDog frame rate of 10-15Hz, we can
between the survey points and the estimated location oéthorun the full stereo plus visual odometry system in real time
points according to visual odometry and stereo ranging. Thet a resolution 320x240 (approximately 50ms/frame). This
two sets of points are related by an unknown 3D rigidyields an expected 3D reconstruction error of around 40cm
body transformation, which we estimate via least-squaresrer 200m (0.2% of distance traveled).
optimization (i.e., minimizing the sum-of-squared padiot-
point distances). The results described below represent th V. APPLICATION 2: LAGR
residual errors after solving for this transform. Visual odometry was an integral component of the JPL
Table | summarizes the results for this data set. Theffort for the DARPA LAGR (Learning Applied to Ground
raw data was logged at 640x480 resolution at 30Hz, buRobotics) program, and was used for both pose estimation
we have generated results for multiple camera resolutiomsd slip detection. The slip detector compares the vehicle
(640x480, 320x240 and 160x120) and frame rates (30Hmotion as determined by wheel encoders to the motion
and 15Hz, the latter simulated by dropping every othedetermined by visual odometry, and measures the degree
frame). The accuracy of visual odometry is indicated byo which the wheels are spinning in place. This slip signal
the reconstruction error, defined as the root-mean-squarisdan important input into both the planning and learning
distance between the estimated and surveyed key points. Algorithms: the planner uses slip as a virtual bumper (f.e.,
distinguish between the 2D error, which includes horizbntahe robot is ‘digging in’, back up and try a different route),
offsets only, and the 3D error, which includes horizontaWhile the learner uses slip as a training signal (so that the
and vertical offsets. Note that there are no visual odometrpbot can avoid similar-looking terrain in the future).
failures in these results; for all combinations of resanti  The LAGR vehicle is shown in Figure 2; it is equipped
and frame rate, the algorithm was able to match a sufficiemtith two stereo camera pairs, wheel encoders and a MEMs
set of features across frames. IMU. We employ a very simple filter that fuses visual
The first notable feature of these results in Table | is alsodometry, wheel encoder and IMU data. Most of the time,
the least surprising: in all cases, accuracy improves witthe filter simply integrates motion estimates from visual
increasing image resolution. For example, on run 2, whichdometry, but falls back on encoders and IMU data when
covers 202m over 5875 frames, the 2D RMS error dropthe visual odometry reports failure.
from 44cm at 160x120 to 5cm at 640x480 (processing data Data was collected in partially vegetated terrain in the
at 30Hz). In this environment, where there are good featurdsroyo Seco near JPL (see Figure 2). The robot was man-
to track on all scales, increased resolution improves featuually driven around loop course, with four separate runs,
localization, which in turn improves the frame-to-framedan each consisting of multiple laps; about 1200m total distanc
integrated motion estimates. traveled. Ground-truth was collected with a TotalStatioy,
The second notable result is that the accuracy improves periodically stopping the robot and measuring the position
the frame ratedecreases. This is initially counter-intuitive, of a retro-reflector; approximately 6 survey points were
until one considers that our visual odometry algorithm is exollected on each lap. As was the case with the BigDog data
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Fig. 2. Top-left: LAGR robot in the Arroyo Seco. Top-righta@ple terrain types, including grass, bushes, rutted ankepgagarth. Bottom: trajectories
estimated by visual odometry (four runs). Each run start®a®) and takes one or more counter-clockwise laps around the eours

VisOdom Encoders
Run  Src. Size Frames Dist.  Fail Time 2D RMS err. 3D RMS err. 2D RMS err. 3D RMS er
1 left 256x192 2334 166m 10 4.8ms  0.462m (0.28%) 0.484m (0.29%) 2.575m%¥d).55 3.356m (2.02%)
2 left 256x192 3936 335m 5 7.8ms  0.960m (0.29%) 1.501m (0.45%) 7.196m (2.15%8.415m (2.51%)
3 left 256x192 3467 360m 13 7.1ms  1.323m (0.37%) 1.742m (0.48%) 12.053m%3.3 13.689m (3.81%)
4 left 256x192 4114  406m 39 7.4ms  2.015m (0.50%) 3.038m (0.75%) 16.349n3%4).0 17.906m (4.41%)
1 right 256x192 2548 166m 1 7.2ms  1.358m (0.82%) 1.654m (0.99%) 2.575m (1).55%3.356m (2.02%)
2 right 256x192 4067 335m 0 7.0ms  1.436m (0.43%) 1.559m (0.47%) 7.196m (2.15%8.415m (2.51%)
3 right 256x192 3681 360m 5 8.6ms  0.738m (0.21%) 1.088m (0.30%) 12.053m¥8.35 13.689m (3.81%)
4 right 256x192 4235  406m 11 8.5ms 1.154m (0.28%) 1.642m (0.40%) 16.349n3%4).0 17.906m (4.41%)
1 left 512x384 2334 166m 0 17.7ms 0.145m (0.09%) 0.434m (0.26%) 2.575m%d).55 3.356m (2.02%)
2 left 512x384 3936 335m 3  209ms 0.317m (0.09%) 0.758m (0.23%) 7.196m%@.15 8.415m (2.51%)
3 left 512x384 3467 360m 5 16.1lms 0.630m (0.18%) 1.013m (0.28%) 12.053m%3.3 13.689m (3.81%)
4 left 512x384 4114  406m 13  22.8ms 0.965m (0.24%) 1.364m (0.34%) 16.34903%). 17.906m (4.41%)
1 right 512x384 2548 166m 1 19.0ms 0.249m (0.15%) 1.485m (0.89%) 2.575m%d).55 3.356m (2.02%)
2 right 512x384 4067 335m 1 14.6ms 0.437m (0.13%) 0.736m (0.22%) 7.196m%@.15 8.415m (2.51%)
3 right 512x384 3681 360m 0 172ms 0.531m (0.15%) 0.601m (0.17%) 12.053m%3.3 13.689m (3.81%)
4 right 512x384 4235 406m 8 13.1ms 0.534m (0.13%) 1.033m (0.25%) 16.349n3%4).0 17.906m (4.41%)

TABLE 11

LAGR ARROYO RESULTS

Fig. 3. Two sets of failed frames from from LAGR Arroyo data.d€bte the large image motions (left pair) and obscuring vegetgright pair).



sets, the ground truth trajectory is related to the estichatgoorly timed, can introduce more error than a thousand
trajectory by an arbitrary 3D rigid-body transform. There-correctly matched frames. It is also possible that poor came
fore, the results quoted below are the residual errors aftealibration may introduce systematic biases into the motio

solving for this transform.

estimate. One response to this, which we have not employed

Results are summarized in Table Il. The vehicle has twim this paper, is to tune the camera calibration using visual
independent, unsynchronized stereo camera pairs, so wa@ometry; i.e., tweak the calibration until the estimated
obtain two sets of data (left and right) for each run arourd thtrajectory fits the ground-truth trajectory. This approaulst
course. Looking at the full resolution results, we see that t be used with caution, however, since other factors (such as
2D error is less than a meter over 400m of travel (betweerrain type and feature distribution) may also contribtate
0.15% and 0.25%). Compare this with the results for whedbng term biases.
odometry plus IMU, where the error over the same distance Having presented the capabilities and limitations of pure
is 16m (4% of distance traveled). This is despite the fadt thaisual odometry, it should be noted that even the most
this terrain is relatively favorable for wheel odometrytiwi minimal robot is likely have some form of proprioceptive

uneven terrain but no slipping or sinking.

sensing (including encoders and/or IMU). The stereo visual

This data set was collected on a sunny day, and the robadometry algorithm described in this paper is therefore
is often driving into its own shadow. Self-shadows havéntended to augment rather than replace these sensorsy and t
traditionally been a problem for visual odometry algorithm work with higher-level pose estimators that fuse data from
(particularly on MER); the algorithm tends to lock-ontomultiple sources.

strong features at the shadow boundary, and incorrectly
report that the vehicle is stationary. However, with clique
based inlier detection, feature points on the shadow baynda
are disregarded (not part of the maximum clique) and selfll]
shadows are therefore ignored.

Unlike the BigDog sandbox results reported in the pre-
vious section, visual odometry reports a number of failured?]
on this course, some of which are shown in Figure 3. There
are two principle failure modes. First, there are some longs]
gaps in the logs (each lasting a second or more) when the
logging disks where unable to sustain the frame rate. No
all of these gaps are successfully bridged by the algorithm,
particularly when the image overlap is small or the scale
change is large. While this is more of a system failure tharns,
a visual odometry failure, it is worth noting that the latter
reports a failure rather than returning an incorrect motion
estimate. The second failure mode occurs when the robgg;
is close to vegetation at camera-height. The dense stereo
methods we employ fail on nearby vegetation, leaving thd’]
visual odometry with few pixels to work with. Once again,
this is a failure of stereo rather than of visual odometry
per se, but it does highlight a limitation of our approach: (8]
visual odometry will only work in environments where stereo
works. This includes rocky, sandy environments (such as
Mars), but excludes certain vegetated environments orhEart®!
(e.g., pushing through tall grass). [10]

VI.

In this paper, we have presented results obtained throub]ﬁ]
“pure” (or nearly pure) visual odometry, demonstrating d12]
high degree of reliability and an accuracy of better than
0.25% over 400m of travel. s

While it may be possible to improve on this result usingi4]
multi-frame estimators (e.g., sliding window bundle atljus
ment), real-world accuracy is limited by other factors. §#ie |45
include missed frames and poor camera calibration. When
visual odometry fails, we must rely on other, less accurate,
sensors to bridge the gap. In our LAGR experiments, fc%w]
example, we have found that a single missed frame, if

DiscussiON ANDCONCLUSION
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